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We apply the differential evolution algorithm (DE) to interrogate a fiber Bragg grating sensor network, where a multi-level 
crossing detector comprising of reference gratings is used to track the sensor gratings which have the same Bragg 
wavelength but different reflectivities. The DE algorithm uses a numerical model of the system and the data collected from 
the network, for wavelength demodulation and direct extraction of the perturbation on each of the sensor. We show that the 
estimated signals are in good agreement with the actual signals. The use of DE algorithm facilitates faster data collection 
and offline interrogation. 
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1. Introduction 

 
The interrogation of a fiber Bragg grating (FBG) 

sensor array has been a challenging problem. In a typical 
scenario, each grating is assigned a unique Bragg 
wavelength and window of operation so that spectrally 
adjacent gratings do not overlap. The optical source for the 
sensor array and/or the detector, such as a tunable Fabry-
Perot filter or an optical spectrum analyzer, is scanned 
over the range of operation of each sensor. The amount of 
perturbation on any given sensor is then deduced by 
calculating the difference between the original Bragg 
wavelength and the current Bragg wavelength of the 
sensor. This technique, called wavelength division 
multiplexing (WDM), limits the number of sensors that 
can be interrogated due to the finite spectral width of the 
broadband source. However, various interrogation 
techniques have been proposed to increase the number of 
sensors, such as, Wavelength Division Multiple Access 
(WDMA) [1], Frequency Modulated Continuous Wave 
(FMCW) technique [2], Code Division Multiple Access 
(CDMA) [3], wavelength-scanned fiber laser [4], Spatial 
Division Multiplexing (SDM) [5], titled Fiber Bragg 
Grating [6], and matched filter interrogation [7]. Majority 
of these interrogation techniques track the Bragg 
wavelength of the sensor. However, the actual perturbation 
on the sensor has to be still deduced indirectly. Also, the 
speed of interrogation is limited by the interrogation 
system used. In applications where data collection and 
post-processing is preferred over real-time observation 
such as civil structural health monitoring [8] for fatigue 
and environmental deterioration, where data is collected 
over few days and is processed later, a different approach 
is required. A wavelength-shift time stamping (WSTS) 
system that is capable of monitoring the perturbation on a 

single sensor in real-time and at high-speeds has been 
demonstrated [9].  

 
 

 
 

Fig. 1. MWSTS network layout to interrogate N FBG 
sensors with the same Bragg wavelengths (λ) and wN  
reflectivities, using M reference gratings (λM) with vM  

reflectivities. (BBS: Broadband Source). 
 

Evolutionary optimization methods such as genetic 
algorithms [10] and particle swarms [11], [12] have been 
employed to detect the wavelengths in an FBG sensor 
network. The advantage of using computer algorithms lies 
in the fact that the data can be collected and processed 
o²ine which delinks the speed of the interrogation system 
used, from the dynamic nature of the perturbation. The 
concept of such an approach is to collect the data as fast as 
possible, but process it later.  

In this paper, we demonstrate a multi-wavelength shift 
time-stamping (MWSTS) grating network that collects the 
data from the sensor gratings in real-time and employs 
differential evolution algorithm to process the data offline. 
The principle of operation of the network and the 
methodology of applying DE to interrogate the network is 
explained in Section II, followed by simulation results and 
conclusions in Sections III and IV, respectively. 
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2. Theory 
 
The layout of the MWSTS interrogation technique is 

shown in Fig. 1. Using a circulator (C1), light from the 
broadband source (BBS) is launched into the sensor 
grating array (SGA), consisting of N sensors with the same 
Bragg wavelength λ and different reflectivities, 
represented as weights {w1, w2,…, wN}. The light reflected 
from the sensors is redirected using another circulator (C2) 
into the reference grating array (RGA). The RGA consists 
of M gratings with different reflectivities, represented as 
weights {v0,…,vM-1} and Bragg wavelengths λk that are 
offset from λ by the relation,  
 

kqk +λ=λ       (1) 
 
where, -M/ 2≤ k ≤ M/ 2, k ≠ 0 and q is the spectral distance 
between adjacent reference gratings. We define q>∆λ, the 
full width at half maximum (FWHM) of the sensor 
gratings so that there is no simultaneous spectral overlap 
of the sensor spectrum and the two adjacent reference 
spectra.  

In the absence of perturbation on SGA, the sensor 
gratings will have the same resonant wavelength λ. If a 
sensor grating is perturbed by an amount kδ, then from eq. 
(1) we see that the light reflected from the sensor will be 
reflected back by the corresponding reference grating λk 
and directed into the photodetector by the circulator C2. 
The output of the photodetector, p(t), consists of a series of 
pulses with amplitudes that are elements of the matrix, 
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For example, if N =2 and M=2, strains s1(t) and s2(t) 

on sensors 1 and 2, respectively, will produce a series of 
pulses with amplitudes that are elements of the set 
{w1v0,w1v1,w1v2,w2v0,w2v1,w2v2}. The order of occurrence 
of the pulses will depend on the strain signal of the 
sensors. Using eq. (2), the output of the photodetector p(t) 
for N sensors and M reference gratings can be represented 
as, 
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2.1 Objective function 

 
The concept of using DE for extracting the N strain 

signals si(t) from p(t) is to model the network shown in 
Fig. 1 numerically and generate an estimate r(t) of p(t) by 
assuming initial random inputs  )t(ŝi . That is, 
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The DE algorithm iteratively tunes the estimates 
)t(ŝi so as to minimize, 
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where, T is the sample length at the output of the 
photodetector. A schematic of the technique is shown in 
Fig. 2. 
 

 
 

Fig. 2 Schematic of applying DE algorithm to 
estimate )t(ŝi . 

 
 

2.2 Differential evolution 
 

Differential evolution algorithm [14] is a powerful 
population-based stochastic search technique, which is an 
efficient and effective global optimizer in the continuous 
search domain. DE algorithm aims at evolving a 
population of NP D-dimensional parameter vectors or 
individuals, which are the candidate solutions, 
i.e. }x,,x{X D

G,i
1

G,iG,i K= , i = 1,…, NP towards the 
global optimum. The initial population covers the entire 
search space as much as possible by uniformly 
randomizing individuals within the search space 
constrained by the prescribed bounds smin and smax, which 
are the expected minimum and maximum strain values, 
respectively. The initial value of the jth parameter in the ith 

individual in generation G = 0 is generated as,  
 

)ss)(1,0(randsx minmaxmin
j

0,i −+=   (6) 
 
where, j =1,…,D, and rand(0,1) represents a uniformly 
distributed random variable within the range [0,1]. After 
initialization, DE employs a certain mutation strategy to 
produce a mutant vector Vi,G with respect to each 
individual target vector Xi,G , in the current population. 
Following the mutation phase, a crossover operation is 
applied to a pair of target vector Xi,G and its corresponding 
mutant vector Vi,G to generate a trial vector 

}U,,U{U D
G,i

1
G,iG,i K= .  If the values of some 

parameters of the newly generated trial vector exceed the 
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corresponding upper and lower bounds, they are randomly 
and uniformly reinitialized to values within the bounds. 
The objective function value of each trial vector g(Ui,G) is 
compared to that of its corresponding target vector g(Xi,G) 
in the current population where g(⋅) is defined in eq. (5). If 
g(Ui,G) ≤ g(Xi,G), the target vector is replaced by the trial 
vector and is included in the population of the next 
generation and for g(Ui,G) > g(Xi,G), the target vector is 
retained in the population for the next generation. The 
process is repeated until a termination criterion is satisfied. 
The DE optimization process is summarized below. 
 

1. Set the generation counter G=0, and randomly 
initialize a population of NP individuals 

}X,,X{P G,NPG,iG K= with 

}x,,x{X D
G,i

1
G,iG,i K= , i = 1,…, NP, uniformly 

distributed in the range [smin , smax]. Find the best 
solution ( Gŝ ) based on the objective function 
value based on eq. (5). 

2. After initialization, the following steps are 
executed until the stopping criterion is met. The 
stopping criterion may be satisfying a predefined 
threshold value of the mean square error as 
defined in eq. (5) or completion of maximum 
fitness evaluations (Max_FEs). 
 
2.1 Mutation: Generate a mutated vector 

}v,,v{V D
G,i

1
G,iG,i K=  corresponding to 

each target vector Xi,G,  
i = 1,…,NP, using, 
 

)XX(F)Xŝ(FXV G,rG,rG,iGG,iG,i i
2

i
1

−⋅+−⋅+= (7) 

where, the indices i
1r and i

2r   are mutually exclusive 
integers randomly generated within the range [1,NP]. 

 
2.2 Crossover: Generate a trial vector 

}u,,u{U D
G,i

1
G,iG,i K= , i = 1,…,NP, for 

each target vector Xi,G. For j = 1,…,D, 
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where, CR is the crossover rate, a constant within the 
range [0,1) that controls the fraction of parameter values 
copied from the mutant vector. 
 

2.3 Selection: Evaluate the trial vectors. For 
i=1,…,NP, if g(Ui,G) ≤ g(Xi,G), Xi,G+1 = Ui,G 

and g(Xi,G+1) = g(Ui,G). If g(Ui,G) < g( Gŝ ), 

Gŝ  = Ui,G and g( Gŝ ) = g(Ui,G) 
 

2.4 Increment the generation count, G = G + 1 
and set Gŝ  = 1Gŝ −  

 
 
3. Simulation results 
 
The DE-MWSTS system is numerically evaluated for 

N = 10, M = 8, λ = 1560nm, Max_FEs= 600, 000, CR=0.5, 
T =12, NP =3000 and {smin, smax} = {-2500με, 2500με}. 
For M = 8, the quantization levels and their corresponding 
reflectivities are, (±1639.344με, 15%, 95%), 
(±1170.960με, 26%, 84%), (±702.576με, 38%, 72%) and 
(±234.192με, 49%, 61%). 
 
 

 
 

(a) 
 
 

 
 

(b) 
 

Fig. 3. (a) DE estimated and original signal (b) Power 
spectral density of the reconstructed and original signal. 
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Fig. 4. A section of  the  DE  generated   estimate )t(ŝi  
(dashed line) of the actual signal si(t) (solid line), where  

i = 1,2,…,10. 
 

For faster convergence and lesser processing time, the 
output of the photodetector p(t) is split into l = T/D smaller 
time length segments {p1(t),p2(t),…,pl(t)} and DE is 
applied on each segment individually for D = 3. One of the 
main advantages of the proposed quantization based 
MWSTS interrogation is the ability to preserve the spectral 
content of the signal. To test the spectral reproducibility, 
the strain signal on a single sensor is reconstructed by 
using DE and the power spectral densities (PSDs) of the 
original and reconstructed signals are compared as shown 
in Fig. 3(a) and (b). It is seen that the reconstructed and 
original PSDs are in good agreement. Fig.4 shows the 
original si(t) and estimated )t(ŝi signals for N = 10, 
generated on a P4, 3GHz, 1GB RAM computer after a 
computation time of 40 minutes. The processing time can 
be reduced further by using high performance computers. 

 
 
4. Conclusions 
 
The differential evolution (DE) algorithm was applied 

to demodulate and extract strain signals from a fiber Bragg 
grating sensor array network tracked by a multilevel 
crossing reference grating network. Numerical simulation 
of the proposed system shows that the estimated signals by 
the DE are in good agreement with the actual signals. 
Faster data collection is achieved by delinking the 
interrogation speed from the speed of sensor response and 
post-processing the collected data. Since MWSTS is a 
completely passive interrogation system, data is collected 
in real-time and processed later to extract the strain 
signals. By using dedicated processors high-speed data 
extraction is possible. 
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